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Abstract
We show that the Schrödinger equation in phase space proposed by Torres-
Vega and Frederick is canonical in the sense that it is a natural consequence
of the extended Weyl calculus obtained by letting the Heisenberg group act on
functions (or half-densities) defined on phase space. This allows us, in passing,
to solve rigorously the TF equation for all quadratic Hamiltonians.

PACS numbers: 03.65.Vf, 02.40.Vh, 45.20.Jj

1. Introduction

The theory of the phase-space Schrödinger equation

ih̄
∂

∂t
�(x, p, t) = H(x + ih̄∂p,−ih̄∂x)�(x, p, t) (1)

corresponding to the quantization rules

xj �−→ xj + ih̄
∂

∂pj

, pj �−→ −ih̄
∂

∂xj

(2)

proposed by Torres-Vega and Frederick [12, 14, 15] (TF) has deservedly received much
attention in the last few years (see, for instance, [1, 7, 9, 10, 12, 16]). TF arrive at their
equation by using a generalized version of the Husimi transform in which coherent states are
used as pseudo-transition matrix elements via a certain kernel Kcs. (We take the opportunity
to point out that this kernel has been extensively studied in the mathematical literature under
the names of ‘wavepacket transform’ or ‘FBI transform’; see e.g. [13].) We intend to show
that TF’s choice corresponds to a natural extension of Weyl calculus, and is therefore in a
sense canonical.
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Notation

We will use the collective notation x = (x1, . . . , xn), p = (p1, . . . , pn) and z = (x, p). We
denote by σ the canonical symplectic form on the phase space R

2n
z = R

n
x × R

n
p:

σ(z, z′) = (z′)T J z, J =
[

0 I

−I 0

]

if z = (x, p), z′ = (x ′p′). We denote by Sp(n) the real symplectic group; it consists of all
linear automorphisms S of R

2n
z such that ST JS = SJST = J . S(Rn) is the Schwartz space

of rapidly decreasing functions on R
n and its dual S ′(Rn) the space of tempered distributions.

The scalar product of two n-vectors x and p is denoted by xp, and we will write ∂z = (∂x, ∂p)

where

∂x =
(

∂

∂x1
, . . . ,

∂

∂xn

)
, ∂p =

(
∂

∂p1
, . . . ,

∂

∂pn

)
.

2. Heisenberg–Weyl operators on phase space

Let us recall the definition of the Heisenberg–Weyl operators from the ‘Schrödingerian’ point
of view (see, e.g., [8]). The flow (ft ) determined by the Hamiltonian Hz0(z) = σ(z, z0) is
given by ft (z) = z + tz0, hence the time-one mapping f1 is just the phase-space translation
T (z0) : z �−→ z + z0; the action of that translation on functions � = �(z) is defined by
‘push-forward’:

T (z0)�(z) = �(z − z0).

The quantized version of the Hamiltonian Hz0 is the operator Ĥ z0 = σ(ẑ, z0) with
ẑ = (x,−ih̄∂x), and the solution of the corresponding Schrödinger equation

ih̄
∂ψ

∂t
= σ(ẑ, z0)ψ, ψ(x, 0) = ψ0(x)

is the function

ψ(x, t) = exp

[
i

h̄

(
tp0x − t2

2
p0x0

)]
ψ0(x − tx0).

The value of ψ a point x at time t = 1 is denoted by T̂ (z0)ψ(x):

T̂ (z0)ψ(x) = exp

[
i

h̄

(
p0x − 1

2
p0x0

)]
ψ(x − x0); (3)

T̂ (z0) is by definition the Heisenberg–Weyl operator associated with the translation T (z0) (see
[8]). So much for the traditional point of view. Let us briefly review the notion of phase as
studied in our paper [5]. Consider a Lagrangian manifold V

n
0 in R

2n
z ; we assume for simplicity

that V
n
0 is simply connected (this restriction, which can be alleviated by passing to the universal

covering, is of no consequence for the argument that follows). Choosing, once and for all, a
base point z̄ in V

n
0 we define the phase of V

n
0 by

ϕ0(z) =
∫

γ (z̄,z)

p dx

where the integral is calculated along an arbitrary path leading from z̄ to z. This defines ϕ0

as a function V
n
0 −→ R such that dϕ0(z) = p dx if z = (x, p) (Vn

0 being Lagrangian, the
integral only depends on the homotopy class with fixed endpoints of γ (z̄, z) and since V

n
0 is

in addition simply connected there is just one homotopy class). Let now H be some arbitrary
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Hamiltonian function; its flow (ft ) takes V
n
0 to a new Lagrangian manifold V

n
t after time t.

The phase of that manifold is (with obvious notations)

ϕ(z, t) = ϕ0(f−t (z)) +
∫

�

p dx − H dt

where the integral is calculated along the arc of phase space trajectory leading from the point
f−t (z) ∈ V

n
0 at time 0 to the point z ∈ V

n
t at time t. Choose now for H = Hz0 ; a straightforward

calculation (see [5], proposition 10) yields

ϕ(z, t) = ϕ0(z − z0) + tp0x − t2

2
p0x0.

We next consider, as is customary in geometric quantization (see [2–4]), a ‘waveform’ on V
n
0,

i.e. an expression of the type

�0(z) = e
i
h̄
ϕ0(z)im0(z)

√
ρ(z)

where m0(z) is an integer related to the Maslov index and ρ a function �0 on V
n
0 (more

accurately, one should view
√

ρ as a ‘half-density’ on V
n
0 but we can ignore this point here

because half-densities and functions transform the same way under translations). The action
of a Hamiltonian flow (ft ) on �0 is given by ft�0(z) = �(z, t) where

�(z, t) = e
i
h̄
ϕ(z,t)im(z,t)(ft )∗

√
ρ(z)

the difference m(z, t) − m0(z) is a count of the number of caustic points appearing when the
flow deforms V

n
0 into V

n
t = ft

(
V

n
0

)
. If H = Hz0 the manifold V

n
0 is translated in phase space

without any ‘bending’ so that there will appear no new caustics, hence m(z, t) = m0(z), and
we thus have

�(z, t) = T̂ (tz0)�0(z) (4)

where the operator T̂ (z0) is now defined by

T̂ (z0)�0(z) = exp

[
i

h̄

(
p0x − 1

2
p0x0

)]
T (z0)�0(z). (5)

A straightforward calculation shows that the partial differential equation satisfied by
�(z, t) is

ih̄
∂�

∂t
(z, t) = 	̂�(z, t), �(t = 0) = �0 (6)

where 	̂ is the operator 	̂ = −p0x + ih̄z0∂z; the latter can be rewritten in terms of the
symplectic form σ as

	̂ = σ(x0, p0; x + ih̄∂p,−ih̄∂x)

so that (6) is just TF’s phase-space Schrödinger equation (1) for the Hamiltonian Hz0 .
The whole argument can actually be reversed: using for instance the methods of

characteristics one checks that the solution of equation (6) is precisely (4) so that we conclude
that the imposition of the TF quantization rules (2) is equivalent to the extension (5) of
Heisenberg–Weyl operators to phase space.

3. Weyl calculus on phase space

The process called ‘Weyl quantization’ associates with a suitable function (or ‘symbol’)
a = a(z) the operator aw = Â defined by

Âψ(x) =
(

1

2πh̄

)n ∫
ã(z0)T̂ (z0)ψ(x) d2n z0 (7)
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where ã is the ‘alternative Weyl symbol’, that is the symplectic Fourier transform Fσ a of a:

ã(z) = Fσ a(z) =
(

1

2πh̄

)n ∫
e− i

h̄
σ (z,z′)a(z′) d2nz′.

The discussion of section 2 suggests that we might now be able to make Â to act not only
on function of x, but also on functions of z by defining

Â�(z) =
(

1

2πh̄

)n ∫
ã(z0)T̂ (z0)�(z) d2nz0 (8)

where � is now a function of z = (x, p) and T̂ (z0)�(z) is given by (5); this expression makes
perfectly sense provided of course, that a and � belong to some adequate spaces; we will
assume this is the case. It turns out that this reinterpretation of Weyl operators again leads to
the TF quantization rules (2). It is sufficient to prove this in the case of one degree of freedom;
dropping indices let X̂ and P̂ be the Weyl operators with symbols x and p; a simple calculation
of (symplectic) Fourier transforms yields

X̂�(z) = ih̄
∫

δ(x0) ⊗ δ′(p0)T̂ (z0)�(z) d2nz0

= −ih̄
∫

δ(z0)

(
ix

h̄
�(z) − ∂�

∂p
(z)

)
d2nz0

=
(

x + ih̄
∂

∂p

)
�(z)

and we thus have X̂ = x + ih̄ ∂
∂p

; by a similar calculation we get P̂ = −ih̄ ∂
∂x

, and we have thus
recovered the TF rules (2).

4. Exact solutions for quadratic Hamiltonians

The extended Weyl calculus constructed in previous section allows us to solve exactly the TF
equation when the Hamiltonian H is a homogeneous quadratic polynomial in the variables
xj , pk , in which case the Hamiltonian flow consists of symplectic matrices St .

One of the main features (and probably one of the most attractive!) of the usual Weyl
correspondence a ←→ aw = Â is the property of metaplectic covariance: if we replace a by
a ◦ S−1 where S is any element of Sp(n) then:

(a ◦ S−1)w = ŜawŜ−1 (9)

where Ŝ is any of the two metaplectic operators ±Ŝ associated with S (see [8], section 6.3; for
the properties of Mp(n) see [4], chapter 6). The proof of property (9) is based on the formula

ŜT̂ (z0)Ŝ
−1 = T̂ (Sz0) (10)

where one uses the traditional definition (3) definition of T̂ (z0); hence if (10) still holds when
we redefine T̂ (z0) by (5), then metaplectic covariance (9) will also hold for our enlarged Weyl
calculus. Now, Mehlig and Wilkinson have shown [11] that if det(S − I ) 
= 0 then

Ŝ = ±k

∫
T̂ (Sz0)T̂ (−z0) d2nz0 (11)

where k is a constant given by

k =
(

1

2πh̄

)n

iν
√

|det(S − I )| (12)
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and ν is a kind of ‘Maslov index’. We have shown [6] that every Ŝ ∈ Mp(n) can be written
as the product of two operators of the type (11) (which are only defined for det(S − I ) 
= 0);
we may thus extend every Ŝ ∈ Mp(n) to an operator defined on functions of z = (x, p);
the natural domain of Ŝ is then S

(
R

2n
z

)
, and can be extended to L2(R2n) and to S ′(

R
2n
z

)
by

continuity. Having done this it is immediate to check, using formulae (11) that (10), and hence
also (9), remain true in our extended Weyl calculus.

Let us now return to the flow (St ); denote by (Ŝt ) the unique one-parameter group in
Mp(n) determined by (St ); viewing the Ŝt as extended Weyl operators we automatically have

ih̄
d

dt
Ŝt = H(x + ih̄∂p,−ih̄∂x)Ŝt

hence �(z, t) = Ŝt�0(z) is the solution of the TF equation (1) for the considered Hamiltonian.

5. Discussion and concluding remarks

We have established that the Torres-Vega and Frederick’s equation fits as part of an extended
Weyl calculus, which was itself motivated by considerations from geometric quantization.
There remains to find the physical interpretation of that equation. A clue might be the fact
that it is possible to rewrite (a variant of ) the TF equation in terms of the star product, familiar
from deformation quantization (this fact seems to have been noted in [1]); this and the fact that
the star product is used to express the time evolution of the Wigner function via a quantum-
Liouville equation might be an indication that the TF equation plays in quantum mechanics a
role similar to that of Hamilton’s equation in classical mechanics.

We will come back to this important question in the near future.
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